

1 Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical

2	lowland	forests	of Panama
---	---------	---------	-----------

- 3
- 4 Amanda L. Matson^{*1}, Marife D. Corre^{*1}, Kerstin Langs¹ and Edzo Veldkamp¹
- 5 *These authors contributed equally to this work
- 6
- 7 ¹Buesgen Institute, Soil Science of Tropical and Subtropical Ecosystems, Georg-August
- 8 University, Buesgenweg 2, 37077, Goettingen, Germany
- 9
- 10
- 11 Correspondence to: Amanda L. Matson (amatson@gwdg.de)

12 Abstract

13	Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model
14	soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil
15	trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified
16	trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed
17	orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly
18	for one (NO) or two (CO ₂ , CH ₄ , N ₂ O) years (2010-2012), using vented dynamic (for NO only) or
19	static chambers with permanent bases. Across the five sites, annual fluxes ranged from: 8.0 to
20	10.2 Mg CO_2 -C ha ⁻¹ yr ⁻¹ , -2.0 to -0.3 kg CH ₄ -C ha ⁻¹ yr ⁻¹ , 0.4 to 1.3 kg N ₂ O-N ha ⁻¹ yr ⁻¹ and -0.82
21	to -0.03 kg NO-N ha ⁻¹ yr ⁻¹ . Soil CO ₂ emissions did not differ across sites, but did exhibit clear
22	seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4
23	sinks; within-site fluxes were largely controlled by soil moisture whereas fluxes across sites were
24	positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low
25	throughout the measurement years, but highest emissions occurred at a mid-precipitation site
26	with high soil N availability. NO uptake in the soil occurred at all sites, with the highest uptake
27	at the low-precipitation site closest to Panama City; NO uptake was likely due to high ambient
28	NO concentrations from anthropogenic sources. Our study highlights the dual importance of
29	short-term (climatic) and long-term (soil/site characteristics) factors in predicting soil trace gas
30	fluxes.
21	

31

32 Keywords: greenhouse gases, carbon dioxide, methane, nitric oxide, nitrous oxide, tropical forest

33 1 Introduction

34	Soils can be both sources and sinks of carbon dioxide (CO ₂), methane (CH ₄), nitrous oxide
35	(N ₂ O) and nitric oxide (NO). Tropical forest soils, specifically, are the largest natural source of
36	soil CO ₂ (Raich and Schlesinger, 1992) and N_2O (Bouwman et al., 1993; Prather et al., 1995)
37	and can be significant sinks of CH ₄ (Steudler et al., 1996; Keller et al., 2005; Sousa Neto et al.,
38	2011). Although soil NO fluxes in tropical forests are often low (Keller and Reiners, 1994;
39	Koehler et al., 2009b), and the canopy can act as a sink for a large proportion of soil-emitted NO
40	(Rummel et al., 2002), even low emissions may be important in regulating atmospheric oxidant
41	production (Keller et al., 1991; Chameides et al., 1992). Studies from Central and South
42	American (CSA) tropical lowland forests have measured a large range of annual soil trace gas
43	fluxes; in one case, N_2O emissions varied by one order of magnitude within a single study (1.23
44	to 11.39 kg N ha ⁻¹ yr ⁻¹ ; Silver et al., 2005). Such disparity in measurements, caused by the

45 temporal and spatial variability found in tropical forests (Townsend et al., 2008), makes it

46 challenging to model soil trace gas fluxes from these areas and to predict how they might be

47 affected by climate change.

48 Temporal variations in soil trace gas fluxes are primarily correlated with temperature and 49 moisture. Temperature is often more important where there are annual extremes in temperature -50 such as in temperate and boreal regions - whereas precipitation and soil moisture are more 51 important in tropical regions, where air temperature does not vary much throughout the year 52 (Saikawa et al., 2013). Soil temperature in CSA tropical forests can be positively correlated with 53 soil CO₂ emissions (Chambers et al., 2004; Schwendenmann and Veldkamp, 2006; Sotta et al., 54 2006, Koehler et al., 2009a) and NO flux (Gut et al., 2002), and negatively correlated with soil N₂O emissions (Keller et al., 2005), though the latter may be due to a co-correlation of soil 55

56	temperature with soil moisture (see below). For soil CH ₄ fluxes, given that the activity of both
57	methanotrophs (CH ₄ consumers) and methanogens (CH ₄ producers) can increase with
58	temperature (Conrad, 1996; Chin et al., 1999; Mohanty et al., 2007), net changes of soil CH ₄
59	fluxes in response to temperature may be driven by other site conditions, such as soil moisture.
60	Soil moisture affects microbial activity, which leads to trace gas production or
61	consumption, both directly through water availability and indirectly through its influence on the
62	soil oxygen status and gas diffusivity (Davidson and Schimel, 1995). Soil CO ₂ emissions from
63	CSA tropical forest soils generally exhibit positive relationships with soil moisture (Davidson et
64	al., 2000), which may be parabolic, with emissions increasing until the threshold at which
65	anaerobic conditions start to inhibit soil CO2 production and/or gas diffusion and then decreasing
66	(Schwendenmann et al., 2003; Sotta et al., 2006; Kohler et al., 2009a). Soil CH ₄ fluxes (positive
67	values for net emissions and negative values for net consumption) in CSA tropical lowland
68	forests also tend to exhibit positive correlations with soil moisture (Keller and Reiners, 1994;
69	Verchot et al., 2000; Davidson et al., 2004; Veldkamp et al., 2013) since high soil moisture
70	conditions favor CH ₄ production, while CH ₄ consumption is reduced due to inhibited diffusion of
71	CH ₄ from the atmosphere to the soil (Le Mer and Roger, 2001; Koehler et al., 2012; Veldkamp et
72	al., 2013). In general, soil NO production through nitrification dominates in aerobic conditions
73	whereas soil N2O production through denitrification dominates in anaerobic conditions (Conrad,
74	2002). Therefore, as shown in several CSA tropical forest studies (Keller and Reiners, 1994;
75	Verchot et al., 1999; Davidson et al., 2004; Keller et al., 2005; Koehler et al., 2009b), with
76	increases in soil moisture, soil NO fluxes generally decrease (though Gut et al., 2002 show that
77	this relationship is complex) while soil N ₂ O fluxes increase.

78	Spatial variations in soil trace gas fluxes are largely controlled by soil physical and
79	biochemical characteristics. Soil texture strongly influences soil water retention and gas
80	diffusivity (Koehler et al. 2010; Hassler et al. 2015) as well as soil fertility, plant productivity,
81	decomposition and ultimately soil N availability (Silver et al., 2000; Sotta et al., 2008; Allen et
82	al., 2015). In CSA tropical forests, both Silver et al. (2005) and Sotta et al. (2006) observed
83	higher soil CO ₂ emissions from sandy than clayey Ferralsol soils, which were attributed to
84	respiration from the higher fine root biomass in the sandy soils. Soil N-oxide fluxes may also be
85	affected by soil texture; soil N_2O emissions can be stimulated by the higher soil N availability
86	and greater proportion of anaerobic microsites in clayey soils (Keller et al., 2005; Silver et al.,
87	2005; Sotta et al., 2008) whereas soil NO fluxes can be facilitated by the higher diffusivity in
88	sandy soils (Silver et al., 2005). Although they have less often been the focus of trace gas
89	studies, soil biochemical characteristics (i.e. soil fertility status) also play an important role in
90	soil trace gas fluxes. Schwendenmann et al. (2003) observed a positive relationship between soil
91	CO ₂ flux and spatial differences in soil organic C and total N, and a negative relationship with
92	soil total P (possibly due to lower fine root biomass in areas of high P). Veldkamp et al. (2013)
93	reported that increases in soil N availability stimulate CH ₄ uptake and/or reduce CH ₄ production
94	in soil, and Hassler et al. (2015) also showed that soil fertility (i.e. increased soil N availability
95	and decreased soil exchangeable Al) enhances soil CH ₄ uptake. Finally, as an essential substrate
96	for nitrification and denitrification, N availability in the soil is the primary controlling factor of
97	soil N-oxide fluxes (Koehler et al., 2009b; Corre et al., 2014).
98	Climate scenarios suggest that tropical regions may experience large changes in

- 99 precipitation regimes in the future, with moist tropical regions likely experiencing both higher
- 100 annual precipitation and more extreme precipitation events (Stocker et al., 2013). Such changes

101 could significantly alter current soil trace gas fluxes, since soil moisture – as described above – 102 plays an important role in both the temporal and spatial variability of soil trace gas fluxes. One 103 approach to studying how changes in precipitation may alter soil trace gas fluxes is to investigate 104 these fluxes along a natural gradient of climate (e.g. precipitation) in a localized region. This 105 approach was used by Holtgrieve et al. (2006) on the Kula volcanic series lava flow in Hawaii, to 106 show that soil N cycling and N-oxide fluxes were strongly affected by mean annual precipitation. However, as suggested by Santiago et al. (2005), precipitation gradients in continental tropical 107 108 forests, where there are variations in species composition and soil parent material, may exhibit 109 different patterns than those from Hawaii. Additionally, precipitation (or climate) is itself a soil 110 forming factor (Jenny, 1945), and continental tropical lowland soils are considerably older than 111 the relatively young volcanic soils (i.e. Santiago et al., 2005). Therefore, soils of continental 112 precipitation gradients will reflect both the long-term effects of the precipitation regime (i.e. on 113 differences in soil physical and biochemical characteristics) in addition to short-term effects (i.e. 114 on soil moisture). 115 In this study, we quantified soil trace gas fluxes in tropical lowland forests of the Panama Canal Watershed, spanning a precipitation gradient of 1700-3400 mm yr⁻¹ (Figure S1). Soil 116

117 fertility (based on an aggregate index that included clay content, ¹⁵N natural abundance, effective

118 cation exchange capacity (ECEC), organic C:N ratio, and exchangeable Al; see 2.4) varied

119 orthogonally with this precipitation gradient (Figure S2). The objectives of our study were to: (1)

- 120 determine how soil fluxes of CO₂, CH₄, N₂O and NO vary along orthogonal gradients of
- 121 precipitation and soil fertility, and (2) assess and compare the spatial and temporal controls of
- 122 soil trace gas fluxes in lowland tropical forests. By using orthogonal gradients of precipitation
- 123 and soil fertility, we were able to examine the relative importance of climatic factors vs. soil

- 124 biochemical characteristics for soil trace gas fluxes. We hypothesized that the temporal and
- spatial patterns of soil trace gas fluxes across sites would follow the pattern of the most
- 126 important controlling soil factors: soil CO₂ fluxes would be parabolic in relation to increasing
- 127 soil moisture along the precipitation gradient; soil CH₄ fluxes would increase (or CH₄
- 128 consumption would decrease) with increasing soil moisture and decreasing soil fertility along the
- 129 precipitation gradient; and soil NO fluxes would decrease whereas soil N₂O fluxes would
- 130 increase with increasing soil moisture along the precipitation gradient.
- 131
- 132 2 Methods
- 133 **2.1 Study sites**

134 Soil trace gas fluxes were measured in five study sites of the Center for Tropical Forest Science

135 (CTFS) located in the Panama Canal Watershed, central Panama (Table 1; Figure S1). Mean

136 annual air temperature is 27 °C (Windsor, 1990); the soil temperature across all sites fluctuated

137 between 22.5 and 27.5 °C during our study years (Fig. 1a). The five sites span a gradient of

138 annual precipitation from 1700 mm yr⁻¹ in Metropolitan National Park (Met) on the Pacific side

139 to 3400 mm yr⁻¹ in P32 on the Atlantic side; the dry season generally lasts from January through

140 April (Corre et al., 2014). The sites were located in either old growth (P8 and P32) or mature

141 secondary (Met, P27, and P19) lowland forests, with tree densities (≥10 cm diameter at breast

height, DBH) of: 322 stems ha⁻¹ in Met, 395 stems ha⁻¹ in P27, 560 stems ha⁻¹ in P8, 520 stems

- 143 ha⁻¹ in P19, and 537 stems ha⁻¹ in P32 (Pyke et al., 2001). Since precipitation and parent
- 144 materials vary across these sites, soil types also vary from Cambisols (Met and P27) on the
- 145 Pacific side to Ferralsols (P8, P19, and P32) on the Atlantic side (Table 1). Floristic composition
- 146 in these sites has been shown to be correlated with both regional precipitation and geology/soil

- 147 attributes (Pyke et al., 2001). The amounts and forms of soil organic P are strongly controlled by
- soil properties whereas the proportion of soil organic P to total P is insensitive to the variation in
- 149 rainfall and soil properties (Turner and Engelbrecht, 2011).
- 150

151 **2.2 Soil trace gas flux measurement**

- 152 Soil CO₂, CH₄ and N₂O fluxes were measured every 2-4 weeks from June 2010 through
- 153 February 2012 (28-31 sampling dates) using static vented chambers. Within each of the five
- sites, a 20 m grid was placed over a 1 ha area and we randomly chose four 20 m x 20 m replicate
- 155 plots with a minimum distance of 20 m between plots. In each replicate plot, four permanent
- 156 chamber bases were installed (0.04 m^2 area and 0.25 m height after inserting 2 cm into the soil)
- 157 at the ends of two perpendicular 20 m transects that crossed in the plot's center. The total volume
- 158 of the chamber (with cover) was 11 L. To measure soil trace gas fluxes, chamber covers were
- 159 placed on the bases and gas samples (100 mL) were taken 2, 12, 22 and 32 min later. Samples
- 160 were stored in pre-evacuated glass containers with Teflon-coated stopcocks. At the Gamboa field
- 161 laboratory, gas samples were then analyzed for CO₂, CH₄ and N₂O concentrations using a gas
- 162 chromatograph (Shimadzu GC-14B, Columbia, MD, USA) equipped with a flame ionization
- 163 detector (FID), an electron capture detector (ECD) and an autosampler, the same instrument that
- 164 was used in our earlier studies (Koehler et al. 2009a, 2009b, 2010, 2012; Veldkamp et al., 2013;
- 165 Corre et al. 2014). Gas concentrations were determined by comparing integration peaks with
- 166 those of three or four standard gases containing increasing concentrations of CO₂, CH₄ and N₂O
- 167 (Deuste Steininger GmbH, Mühlhausen, Germany).
- Soil NO fluxes were measured every 2-4 weeks from June 2010 through June 2011 (1821 sampling dates) using open dynamic chambers (11 L volume) placed for 5-7 minutes on the

170 same permanent bases described above. The air from the chamber was sampled by a pump with a flow rate of 0.5-0.6 L min⁻¹, passed through a CrO₃ catalyst that oxidizes NO to NO₂, and flowed 171 172 across a fabric wick that is saturated with a luminol solution. The luminol then oxidizes and 173 produces chemiluminescence, which is proportional to the concentration of NO₂, and is 174 measured with a Scintrex LMA-3 chemiluminescence detector (ScintrexUnisearch, Ontario, Canada). To minimize deposition losses within the sampling system, all parts in contact with the 175 176 sample gas are made of Teflon (PTFE). To prevent contamination of tubing and analyzers, 177 particulate matter is removed from the sampled air by PTFE particulate filters (pore size: 5 µm). 178 In order to minimize potential changes in catalyst efficiency caused by variations of air humidity, 179 a known flux of ambient air dried by silica gel was mixed to the sampled air to maintain a 180 humidity of ~50 %; the detector was also calibrated in-situ prior to and following chamber 181 measurements, using a standard gas (3000 ppb NO; DeusteSteininger GmbH, Mühlhausen, 182 Germany).

Soil trace gas fluxes were calculated as the linear change in concentration over time, and
were adjusted for air temperature and atmospheric pressure measured during or directly after
sampling; zero fluxes were included in the data statistical analysis. Annual soil NO fluxes were
calculated using the June 2010-May 2011 measurements and annual soil CO₂ and N₂O fluxes
were calculated using the January to December 2011 measurements; annual fluxes were
calculated using the trapezoid rule between days with measured fluxes (Koehler et al. 2009a,
2009b, 2010; Veldkamp et al., 2013; Corre et al. 2014).

191 **2.3 Soil biochemical characteristics**

192	In each replicate plot after each soil trace gas flux measurement, samples of the top 5 cm of soil
193	were taken about 1 m from each of the 4 chamber bases, pooled and mixed thoroughly in the
194	field to measure soil extractable NH_4^+ and NO_3^- concentrations and gravimetric water content. In
195	the field, soil samples were placed into prepared extraction bottles containing 150 mL of 0.5M
196	K_2SO_4 and shaken thoroughly. Back at the field station (≤ 6 h after samples were taken), the
197	extraction bottles were again shaken (~ 1 h) and then the extracts were filtered and frozen
198	immediately. The remaining soil was oven-dried at 105 °C for 1 day in order to ascertain
199	gravimetric water content; this was then used to calculate the dry mass of the soil that had been
200	extracted for mineral N. The frozen extracts were sent by air to the University of Göttingen,
201	Germany for analysis by continuous flow injection colorimetry (Cenco/Skalar Instruments,
202	Breda, Netherlands). The Berthelot reaction method was used to determine NH_4^+ (Skalar Method
203	155-000) and the copper-cadmium reduction method was used to determine NO_3^- (NH ₄ Cl buffer
204	without ethylenediaminetetraacetic acid; Skalar Method 461-000).
205	Soil pits were dug in the center of each of the four replicate plots per site and soil samples
206	were taken for the depth intervals of 0-5, 5-10, 10-25 and 25-50 cm. Soil samples were air-dried
207	and sieved through a 2-mm sieve. Natural abundance ¹⁵ N signatures were determined from the
208	ground soil samples using isotope ratio mass spectrometry (IRMS; Delta Plus, Finnigan MAT,
209	Bremen, Germany). We calculated the δ^{15} Nenrichment factor (ϵ) using the Rayleigh equation
210	(Mariotti et al., 1981): $\varepsilon = d_s - d_{so} / \ln f$, where d_s is the δ^{15} N natural abundance at different depths
211	in the soil profile, d_{so} is the δ^{15} N natural abundance of the reference depth (top 5 cm), and f is the
212	fraction of total N remaining (i.e. the total N concentration at a given depth divided by the total
213	N concentration in the top 5 cm). The ϵ value was used as an integrative indicator of soil N

- 214 availability, as this correlates with internal soil-N cycling rates (Sotta et al., 2008; Baldos et al.,
- 215 2015). Total organic C and N were measured from the ground soil samples by dry combustion
- 216 using a CN analyzer (ElementarVario EL; Elementar Analysis Systems GmbH, Hanau,
- 217 Germany). ECEC was determined from the sieved soil samples by percolating with unbuffered
- 218 1M NH₄Cl and measuring the exchangeable element concentrations (Ca, Mg, K, Mn, Na, Fe and
- Al) in the percolates using an inductively coupled plasma-atomic emission spectrometer (ICP-
- 220 AES; Spectroflame, Spectro Analytical Instruments, Kleve, Germany). Base saturation was
- 221 calculated as the ratio of exchangeable base cations to the ECEC. Soil pH (H₂O) was analyzed
- 222 from a 1:4 soil-to-water ratio. Particle size distribution of the mineral soil was determined using
- the pipette method with pyrophosphate as a dispersing agent (König and Fortmann, 1996).
- 224

225 2.4. Soil fertility index

The variation in soil types along our rainfall gradient (Table 1) was paralleled with variations in soil biochemical characteristics (Table 2; see 3.1). Thus, we developed a soil fertility index using principal component analysis (PCA), similar to the approach employed by Swaine (1996); for

229 each site, the index was based on five soil physical and biochemical properties: 1) clay content,

230 which reflects water- and nutrient-holding capacity, 2) ε that signifies long-term soil N status, 3)

231 ECEC and soil C:N ratio, which indicate bioavailability of rock-derived nutrients and soil

organic matter, and 4) exchangeable Al, which implies soil chemical suitability. We used the

233 depth-weighted average of these soil parameters (Table 2), measured at various depth intervals in

- the top 50 cm depth (except for ε that is calculated for the whole depth; see above). The first
- component factor of this PCA analysis explained 42 % of the variation in these soil
- characteristics among sites (Figure S2) and the factor scores were used as the quantitative index

- 237 of soil fertility for each of the four replicate plots per site. This analysis showed that soil fertility
- 238 of the five lowland forests varied orthogonally with the precipitation gradient (Figure S2).
- 239

240 2.4 Statistical analyses

241 We note that our statistical tests are based on the four replicate plots in each of the five 1-ha

242 forest sites along these orthogonal gradients of precipitation and soil fertility, and that the sites

themselves were not replicated along the gradients. Consequently, our interpretations and

- 244 conclusions are limited only to these studied sites.
- 245 Soil trace gas fluxes (based on the average of the four chambers per replicate plot on each 246 sampling day) and the accompanying soil explanatory variables (soil temperature, gravimetric 247 moisture, NH₄⁺ concentration and NO₃⁻ concentration) were tested for normality using Shapiro-248 Wilk's test; variables with non-normal distributions were square root or log transformed. We 249 then used linear mixed effects models (LMEs) to assess the differences in these repeatedly-250 measured variables along the orthogonal precipitation and soil fertility gradients, with site and/or 251 season as the fixed effect(s) and sampling days and replicate plots as random effects. If the 252 Akaike information criterion showed an improvement in the LME models, we included a first-253 order temporal autoregressive function to account for the decreasing correlation of measurements 254 with increasing time (Zuur et al., 2009) and/or a variance function (varIdent) to account for 255 heteroscedasticity of fixed-factor variances (Crawley, 2012). To assess the relationships between 256 soil trace gas fluxes and soil explanatory variables, we used the mean values of the four replicate 257 plots on each sampling date, and conducted Pearson correlation tests over the entire sampling 258 period across the five sites and for each site.

259	For the soil biochemical characteristics measured only once (Table 2), differences in
260	depth-weighted values (for the top 50 cm) among sites were evaluated using one-way analysis of
261	variance followed by a Tukey HSD test. Their relationships with soil trace gas fluxes across the
262	five sites (using annual values and average seasonal values) were tested using Spearman rank
263	correlations. In all statistical tests, differences among sites or between seasons and correlation
264	coefficients were considered significant at $P \le 0.05$. Data analyses were conducted using the R
265	open source software (R Core Team, 2013).
266	
267	3 Results
268	3.1 Soil biochemical characteristics
269	The soil $\delta^{15}N$ natural abundance signatures and ϵ , which are proxies of the long-term soil N
270	status (i.e. the higher the values, the higher the soil N availability), were lower at the low-rainfall
271	sites (Met and P27) than at one of the mid-rainfall sites (P19) ($P \le 0.05$; Table 2). Soil organic C
272	was lower at one of the lower-rainfall sites (P27) than at the high-rainfall site (P32) whereas the
273	differences in total soil N among sites paralleled the increase in annual precipitation ($P \le 0.05$;
274	Table 2). Soil pH, ECEC and exchangeable bases generally showed the opposite trend to that of
275	total soil N – higher values at the low-rainfall sites (with less-weathered soils) than at the mid-
276	and high-rainfall sites (with highly weathered soils) (all $P \le 0.05$; Tables 1 and 2). Soil
277	exchangeable Al showed the converse pattern to that of exchangeable bases ($P \le 0.02$; Table 2).
278	Of the four soil controlling factors that were monitored over time (temperature, moisture,
279	extractable NH_4^+ and extractable NO_3^- ; Fig. 1a-d), only moisture and extractable NO_3^- differed
280	strongly between seasons ($P < 0.01$; Fig. 1b-c; Table 3); soil moisture contents were higher in the
281	wet season than the dry season at all sites, while extractable soil NO_3^- concentrations were lower

282	in the wet season that the dry season at all sites but P19. Within each season, all four soil
283	controlling factors differed along the precipitation gradient (all $P < 0.01$ except $P = 0.04$ for
284	extractable NH_4^+ in the wet season; Table 3). Soil temperatures in both seasons were lower at
285	P32 (3400 mm) than at all other sites (not significant at P27 in the dry season), and also lower at
286	P27 (2030 mm) than Met (1700 mm). Soil moisture contents, in contrast, were higher in both
287	seasons at P32 than at the other four sites. Extractable soil NO_3^- concentrations in both seasons
288	were higher at Met and P8 (2360 mm) than at P27, P19 (2690 mm) and P32, and in the wet
289	season, also higher at Met than P8. Extractable soil NH_4^+ concentrations were higher at P32 than
290	Met in both seasons. Across sites, over the 21-month measurement period, soil moisture was
291	inversely correlated with temperature (r = -0.28, $P < 0.01$, n = 145) and extractable soil NO ₃ ⁻ (r =
292	-0.51, $P < 0.01$, n = 145) and directly correlated with extractable soil NH ₄ ⁺ (r = 0.46, $P < 0.01$, n
293	= 145).

294

295 **3.2 CO₂ fluxes**

296 Although soil CO₂ emissions did not differ among the five sites over the 21-month measurement

297 period (P = 0.40; Fig. 2a; Table 3), emissions exhibited a parabolic relationship with soil

298 moisture across sites (Fig. 3) and were higher in the wet season than the dry season at each site

299 ($P \le 0.05$; Table 3). Over the 21-month sampling period, average daily soil CO₂ emissions from

300 the five sites were correlated with soil temperature (r = 0.46, P < 0.01, n = 145), soil moisture (r

301 = 0.35, P < 0.01, n = 145; Fig. 3), extractable soil NH₄⁺ (r = 0.32, P < 0.01, n = 145) and

302 extractable soil NO₃⁻ (r = -0.21, P = 0.01, n = 145). Within individual sites, average daily soil

303 CO₂ emissions also exhibited negative correlations with extractable soil NO₃⁻ at Met (r = -0.48, P

304 = 0.01, n = 27), P8 (r = -0.39, P = 0.03, n = 30), and P32 (r = -0.54, P < 0.01, n = 30).

- 305 Similar to the relationship observed for average daily fluxes (Fig. 3), the annual soil CO₂
- 306 emissions (Table 4) also exhibited a parabolic pattern across the five sites of the precipitation
- 307 gradient: high at the mid-rainfall sites (P8 and P19) and low at both ends of the precipitation
- 308 gradient (Met and P32). There were no significant correlations between soil CO₂ emissions
- 309 (neither for annual CO₂ fluxes nor for wet- and dry-season averages) and the soil biochemical
- 310 characteristics (Table 5; Table S1).
- 311

312 3.3 CH₄ fluxes

313 On average, despite occasional emissions in the wet season (Fig. 2b), the soils in the five sites

314 acted as CH₄ sinks (Tables 3 and 4). Comparing between seasons, soil CH₄ uptake was higher in

315 the dry season than the wet season at all sites ($P \le 0.05$; Table 3). Differences among sites were

316 the same in both seasons; soil CH_4 uptake at P19 (2690 mm) was higher than at Met (1700 mm),

317 P27 (2030 mm) and P32 (3400 mm), and higher at P8 (2360 mm) than at Met ($P \le 0.05$; Table

318 3). Over the 21-month sampling period, average daily soil CH₄ fluxes from the five sites were

319 positively correlated (i.e. soil CH₄ uptake decreased) with soil moisture (r = 0.44, P < 0.01, n =

320 145; Fig. 4a). Within individual sites, average daily soil CH₄ fluxes at P8 (r = -0.63, P < 0.01, n

321 = 30), P19 (r = -0.48, P < 0.01, n = 28) and P32 (r = -0.48, P < 0.01, n = 30) also exhibited

322 negative correlations with extractable soil NO_3^- (i.e. soil CH_4 uptake increased as extractable soil

323 NO_3^- increased).

```
324 The annual soil CH<sub>4</sub> fluxes (Table 4) were positively correlated (Spearman rho = 0.84, P
```

- < 0.01, n = 20; Fig. 4b) with the soil fertility index (Figure S2) and negatively correlated with
- annual precipitation (rho = -0.63, P < 0.01, n = 20; Fig. 4c). Of the soil biochemical properties
- 327 measured once, annual soil CH₄ fluxes were negatively correlated with soil ¹⁵N natural

- 328 abundance and exchangeable Al, and positively correlated with ECEC, base saturation and pH
- 329 (Table 5). Average seasonal soil CH₄ fluxes exhibited similar correlations (Table S1); it is
- notable that when correlation analysis was separated by season, correlations with soil ¹⁵N natural
- abundance were stronger in the dry season than the wet season.
- 332

333 3.4 N₂O fluxes

- 334 Soil N₂O fluxes differed among sites only in the wet season and not in the dry season (Table 3;
- Fig. 2c); soil N₂O emissions in the wet season were higher at P8 (2360 mm) than all other sites
- P < 0.01). Within individual sites, soil N₂O emissions were higher in the wet season than the
- dry season at P8 and P19 (2690 mm) (P < 0.01; Table 3). These two sites were also the only two
- 338 to exhibit correlations with soil controlling factors; soil N₂O emissions increased with increases
- 339 in soil moisture at P8 (r = 0.69, P < 0.01, n = 30) and P19 (r = 0.60, P < 0.01, n = 28), and
- decreased with increases in soil NO₃⁻ concentration at P8 (r = -0.57, P < 0.01, n = 30) and P19 (r
- 341 = -0.38, P = 0.05, n = 28). Annual soil N₂O emissions (Table 4) were negatively correlated with
- 342 clay content (Table 5). Seasonal average soil N₂O emissions were positively correlated with soil
- ¹⁵N natural abundance in the wet season but not in the dry season (Table S1).
- 344

345 3.5 NO fluxes

- 346 In all five sites, net uptake of NO was measured more often than net NO emissions from the soil
- (Fig. 2d) and NO uptake was consistently higher ($P \le 0.05$) in the wet than dry season, except at
- 348 P19 (2690 mm) where there was no difference between seasons (Table 3). Wet-season soil NO
- uptake at Met (1700 mm) was larger than all other sites (P < 0.01; Table 3), while in the dry
- season soil NO uptake at P19 was larger than at P8 (2360 mm) and P32 (3400 mm) (P < 0.01;

- 351 Table 3). Over the 13-month measurement period, soil NO fluxes were negatively correlated (i.e.
- net NO uptake increased) with ambient NO concentration (r = -0.34, P < 0.01, n = 103; Fig. 5).
- 353 Within individual site, only soil NO fluxes at P8 showed a negative correlation with soil
- moisture (r = -0.67, P < 0.01; n = 21) and positive correlation (i.e. net NO uptake decreased)
- 355 with extractable soil NO₃⁻ (r = 0.65, P < 0.01; n = 21). There were no correlations with average

356 seasonal soil NO fluxes in the wet season, but in the dry season average seasonal soil NO fluxes

- 357 were negatively correlated with clay content across sites (Table S1).
- 358

359 4 Discussion

360 **4.1 CO₂ fluxes**

- 361 Soil CO₂ emissions from CSA tropical lowland forests, including Brazil (Davidson et al., 2000,
- 362 Chambers et al., 2004, Silver et al., 2005, Sotta et al., 2006), Puerto Rico (Raich and Schlesinger,
- 363 1992), Panama (Kursar 1989, Koehler et al., 2009a; Nottingham et al., 2010) and Costa Rica

364 (Schwendenmann and Veldkamp, 2006), range from 10.8 Mg C ha⁻¹ yr⁻¹ (Silver et al., 2005) to

- 365 39.7 Mg C ha⁻¹ yr⁻¹ (Sotta et al., 2006). Our annual soil CO₂ emissions (Table 4) were on the
- 366 lower end of this range. When compared with other studies in lowland forests of Panama, our
- 367 values were also at the lower end of those reported for Barro Colorado Island (BCI) (estimated at
- 368 14.5 Mg C ha⁻¹ yr⁻¹ in 1986; Kursar 1989) and Gigante (ranging from 13.59 ± 1.34 to $17.12 \pm$
- $1.59 \text{ Mg C ha}^{-1} \text{ yr}^{-1}$ between 2006 and 2008; Koehler et al., 2009a), which can, in part, be
- attributed to inter-annual variation. Soil CO₂ fluxes at Gigante varied by more than 3 Mg C ha
- ¹yr⁻¹ between 2006 and 2008 (Koehler et al., 2009a), and fine litterfall, one of the substrates of
- heterotrophic respiration, also varied by about 2 Mg ha⁻¹ yr⁻¹ from 1998 to 2008 (with annual
- 373 averages of 7.7-9.7 Mg ha⁻¹ yr⁻¹; Wright et al., 2011). Moreover, our values were comparable

374	with that of a mature secondary forest (P15 site, 7-18 Mg C ha ⁻¹ yr ⁻¹ in 2007/2008; Notthingham
375	et al., 2010) close to our P8 and P19 sites (Figure S1). Finally, three of our sites (Met, P27 and
376	P19) were mature secondary forests, with tree densities (particularly at Met and P27; see 2.1)
377	lower than the old growth forests on BCI (Pyke et al., 2001) and Gigante (Koehler et al., 2009a).
378	This may have additionally influenced soil CO_2 fluxes since up to 35 % of CO_2 emissions can be
379	contributed by root respiration (Silver et al., 2005).
380	Soil CO ₂ emissions responded to changes in climatic factors on a seasonal scale (i.e.
381	higher soil CO_2 fluxes in the wet than dry season at all sites; Table 3) and to daily fluctuations in
382	soil temperature and moisture across the five sites (see 3.2). The higher CO_2 emissions in the wet
383	season were likely due to the alleviation of water competition between decomposers and
384	vegetation; in seasonal tropical forests, litter tends to fall in the dry season, but low soil moisture
385	limits decomposition until the start of the wet season (Yavitt et al., 2004). Other studies from
386	CSA lowland forests have also reported a positive relationship between soil CO ₂ emissions and
387	soil temperature (Chambers et al., 2004; Schwendenmann and Veldkamp, 2006; Sotta et al.,
388	2006, Koehler et al., 2009a), and parabolic relationships (Fig. 3) between soil CO ₂ emissions and
389	soil moisture (Schwendenmann et al., 2003; Sotta et al., 2006; Kohler et al., 2009). Additionally,
390	soil CO ₂ emissions responded to changes in soil mineral N both on the plot level and across sites
391	(see 3.2). Relationships between soil CO ₂ emissions and soil mineral N concentrations have not
392	been reported in other studies, although Schwendenmann et al. (2003) observed that spatial
393	differences in soil total N were positively correlated with soil CO ₂ fluxes, and Koehler et al.
394	(2009a) found that chronic N addition decreased soil CO_2 fluxes in a montane tropical forest
395	(although not in a lowland forest). However, the correlations between CO ₂ emissions and both

- 396 NH₄⁺ (positive correlation) and NO₃⁻ (negative correlation) may also simply be reflecting a co-
- 397 correlation between extractable mineral N and soil moisture (see 3.2).
- 398 In support of our hypothesis, we observed that annual soil CO₂ fluxes exhibited a 399 parabolic pattern along the precipitation gradient (Table 4) similar to the relationship seen with 400 the daily emissions and soil moisture (Fig. 3). However, soil CO₂ efflux did not differ among the 401 five forest sites of this precipitation gradient (Table 3). This lack of differences between sites 402 could be due to similarity of a soil-controlling factor that results in comparably low soil CO₂ 403 emissions at all sites. For example, although organic C and total N differed between sites, the 404 soil C:N ratios were comparable along these orthogonal gradients of annual precipitation and soil fertility (Table 2), suggesting that the bioavailability of soil organic matter for heterotrophic 405 406 respiration may be similar across sites. Additionally, the microbial communities that contribute 407 to heterotrophic respiration may have adapted to the existing differences in substrate quantity 408 (e.g. soil organic C), soil and climatic characteristics between the sites (Tables 2 and 3) and 409 therefore exhibited an overall similar soil CO₂ efflux.

410

411 **4.2 CH₄ fluxes**

412 Our annual soil CH₄ uptake (Table 4) was within the range of other reported values from Brazil 413 and Panama (Verchot et al., 2000; Davidson et al., 2004; Keller et al., 2005; Silver et al., 2005; 414 Veldkamp et al., 2013) although studies have also measured stronger uptake in CSA lowland 415 forests (up to 4.90 kg C ha⁻¹ yr⁻¹; Keller and Reiners, 1994; Steudler et al., 1996; Keller et al., 416 2005; Sousa Neto et al., 2011). Studies that measured higher uptake may have had soils with 417 higher gas diffusivity due to lower soil water content and/or lower clay content (see Veldkamp et

418 al., 2013); in our five sites, the two sites with the highest sand content (P8 and P19; Table 1)

419 exhibited the highest soil CH₄ uptake (Tables 3 and 4).

420 As shown in several CSA tropical forest studies (Keller and Reiners, 1994; Verchot et al., 421 2000; Davidson et al., 2004; Veldkamp et al., 2013), soil CH_4 fluxes are strongly regulated by 422 soil moisture content. Soil CH₄ fluxes from our sites exhibited this expected pattern, with 423 regards to less uptake during periods of high water content (i.e. wet vs. dry season; Table 3) as 424 well as a positive correlation of soil CH₄ fluxes with water content (Fig. 4a). This we attributed 425 to limited gas diffusivity from the atmosphere into the soil and/or methanogenic activity during 426 periods of high moisture. Another soil factor controlling the temporal soil CH₄ uptake in our sites 427 may have been soil NO_3^- , as we observed increased CH_4 uptake as NO_3^- concentrations increased 428 in P8, P19 and P32 (see 3.3). Although this could be a co-correlation between soil NO₃⁻ 429 concentration and soil moisture (see 3.1), increasing CH_4 uptake in the soil with increasing 430 mineral N has been observed in tropical forest soils of Australia (Kiese et al., 2003), Panama 431 (Veldkamp et al., 2013) and Indonesia (Hassler et al., 2013). Additionally, our soils exhibited a correlation between annual soil CH₄ fluxes and soil ¹⁵N natural abundance signatures (Table 5), 432 433 the latter being an indicator of soil N availability (Sotta et al. 2008; Arnold et al. 2009; Baldos et al. 2015). When separated by season, the correlation between soil CH₄ fluxes and soil ¹⁵N natural 434 435 abundance was stronger in the dry season than the wet season (Table S1), supporting our claim 436 that soil N availability enhanced CH₄ uptake in soils when gas diffusion was favorable (dry 437 season). 438 The negative correlation between annual soil CH₄ uptake and annual precipitation (Fig.

439 4c; see 3.3) seemed at first to conflict with the mechanism we explained above for the positive

440 correlation with soil moisture content (Fig. 4a). However, we attribute this to the fact that annual

441	precipitation was not the underlying factor controlling the annual soil CH ₄ fluxes across these
442	sites. Instead, the best indicator for annual soil CH4 flux across the five sites was soil fertility
443	(Fig. 4b), which showed an opposite pattern to that of annual precipitation (Figure S2). This soil
444	fertility control was supported by the strong correlations of both annual (Table 5) and seasonal
445	(Table S1) soil CH ₄ fluxes with ECEC and exchangeable Al, both included in the soil fertility
446	index (Figure S2; see 2.4). The negative correlation of soil CH ₄ fluxes with exchangeable Al,
447	which was clearly observed in the wet season (Table S1), could suggest an inhibition of
448	methanogens by water-soluble Al (as opposed to inhibiting methanotrophs, as seen by Tamai et
449	al., 2003). The correlations between soil CH ₄ fluxes and fertility indicators reflected the site
450	differences in soil biochemical characteristics (Table 2). Specifically, as shown by the strong
451	inverse correlation between soil δ^{15} N natural abundance signatures and exchangeable cations
452	(Table 5), the positive correlation between soil CH_4 flux and fertility (Fig. 4b) likely reflected the
453	long-term effects of soil development (Tables 1 and 2) - more CH_4 uptake occurred in highly
454	weathered soils with less rock-derived nutrients but high soil N availability (i.e. high $\delta^{15}N$
455	natural abundance signatures) (Tables 4 and 5). This supports our hypothesis that soil CH_4
456	uptake reflected the control of soil moisture and N availability across sites along this
457	precipitation gradient. Our results also highlight the importance of considering soil properties - in
458	particular the degree of soil development - rather than simply climatic factors, when
459	predicting/modeling soil CH4 fluxes on a large scale.
460	

461 **4.3 N₂O fluxes**

462 Our annual soil N_2O fluxes (Table 4) were within the lower end of the range (1.23 - 11.4 kg N

463 ha⁻¹ yr⁻¹) reported from other CSA forest studies (Keller and Reiners 1994, Verchot et al., 1999,

464	Keller et al., 2005, Silver et al., 2005). In comparison with other studies from Panama, our N_2O
465	fluxes were similar to those measured from Gigante during dry years (0.5 ± 0.2 kg N ha ⁻¹ yr ⁻¹ in
466	2008–2009 with annual precipitation 5–26 % lower than the 12-year average; Corre et al. 2014)
467	but slightly lower than those measured from the same site during wet years (1.0 - 1.4 kg N ha ⁻¹
468	yr ⁻¹ in 2006–2007 with annual precipitation 5–17 % higher than the 12-year average; Koehler et
469	al., 2009b). The low soil N_2O fluxes at our sites were likely caused by the generally lower soil N
470	availability compared to the Gigante site; the five sites in our present study had an average gross
471	N mineralization rate of $4 \pm 1 \text{ mg N kg}^{-1} \text{ d}^{-1}$ in the 2010 wet season (Corre et al. unpublished
472	data), which was significantly lower than those from Gigante ($29 \pm 6 \text{ mg N kg}^{-1} \text{ d}^{-1}$ in the 2006
473	wet season; Corre et al. 2010). In addition, inter-annual variation in rainfall and hence soil
474	moisture can strongly affect soil N_2O emissions (Corre et al., 2014). Our measured soil N_2O
475	emissions exhibited a tendency to be higher in the wet season than the dry season (P8 and P19;
476	Table 3), highest at the mid-rainfall site of P8 (which could mean that at the high-rainfall sites
477	N_2O could have been further denitrified to N_2), and were only correlated with the soil ^{15}N natural
478	abundance signatures (as an indicator of soil N availability) in the wet season (Table S1). At the
479	sites (P8 and P19), where N_2O emissions were higher in the wet than dry season and soil NO_3^-
480	levels were lower in the wet than dry season (Table 3), the inverse correlation between daily soil
481	N_2O emissions with NO_3^- concentrations over the 21-month measurement period suggests that
482	during the wet season N_2O production could have been high but might have been further
483	denitrified to N ₂ , and hence resulted in low soil NO ₃ ⁻ concentrations. This argument is supported
484	by our earlier study in Gigante, where nitrification and denitrification contributed equally to soil
485	N_2O emissions during the dry season but denitrification was the main process contributing to soil
486	N ₂ O emission in the wet season (Koehler et al., 2012; Corre et al. 2014). Our results partly

- 487 supported our hypothesis in that soil N_2O emissions were highest at the mid-precipitation site 488 (with the highest soil N availability as indicated by ¹⁵N natural abundance; Table 2) due to
- 489 possible reduction of N_2O to N_2 at the high precipitation site.
- 490

491 4.4 NO fluxes

- 492 Our annual soil NO uptake (Table 4) was considerably lower than other reported NO fluxes,
- 493 which are usually small net emissions rather than net uptake. Soil NO emissions from Panama,
- 494 Costa Rica and Brazil range from 0.26 to 7.88 kg N ha⁻¹yr⁻¹ (Keller and Reiners 1994, Verchot et
- 495 al., 1999, Gut et al., 2002, Keller et al., 2005, Silver et al., 2005, Koehler et al., 2009b; Corre et
- 496 al. 2014). However, the net uptake that we measured may be reflecting unusually high ambient
- 497 air NO concentrations in our forest sites as compared to forests from other studies. Although all
- 498 of our sites were located in mature-secondary or old-growth forests, the forests were located
- 499 within the Panama Canal watershed, where there is heavy, year-round marine traffic (~13,000
- 500 cargo ships in 2011; Hricko, 2012). Furthermore, the highest levels of soil NO uptake that we
- 501 measured were in the Met site (Table 4); in addition to being in the vicinity of the Panama Canal,
- 502 the park is located within the city limits of Panama City, which has a population of
- 503 approximately 1.6 million people (The World Factbook, 2015). Therefore, elevated ambient air
- 504 NO concentrations from anthropogenic emissions may be driving the NO uptake that we
- 505 measured. Our instrument cannot measure O₃ concentration, which could be high in these sites
- 506 influenced by anthropogenic emissions. Thus, the NO uptake that we saw may have been driven
- 507 by both chemical (Pape et al. 2009) and microbiological reactions (as NO is an intermediate
- 508 product of nitrification and denitrification; Davidson et al. 2000). The dominance of a chemical
- 509 reaction of NO uptake at our sites was supported by the fact that we observed a negative
 - 22

510 correlation of soil NO fluxes with ambient air NO concentrations (i.e. net NO uptake increased as ambient air NO concentration increased; Fig. 5). The reaction of NO with O₃, which is then 511 512 subsequently removed from the enclosed chamber air and deposited onto the soil, is driven by 513 the ambient air NO concentrations (Pape et al. 2009). This can occur in under a minute (which 514 we observed on days with low ambient air NO concentrations when we measured net soil NO 515 emissions; e.g. at P8 during the dry season, Fig. 2b) or can take up to the same order of 516 magnitude as the turnover time of the chamber air (which we observed on days with high 517 ambient air NO concentrations when we measured net NO uptake; e.g. at the Met site on most of 518 the sampling days, Fig. 2b). It is notable, that an earlier study in Gigante, which is also part of 519 the Panama Canal watershed, did not show net NO uptake but instead small net NO emissions 520 (Koehler et al., 2009b; Corre et al. 2014). However, as mentioned above, the Gigante site had 521 higher soil N-cycling rates (Corre et al. 2010) and lower ambient air NO concentrations than our 522 sites, such that NO production in the soil overrides the chemical reaction of NO uptake and thus 523 resulted in net soil NO emissions. 524 The general trend across sites did not support our hypothesis regarding soil NO emission, 525 since local conditions of high ambient NO concentrations in the atmosphere had an overriding

526 effect resulting in net NO uptake in soils (Fig. 2d). However, our results indicated that our soils

527 could also be a net source of NO when soil conditions were favourable and/or ambient air NO

528 concentrations were not elevated. We observed that net NO uptake was consistently higher in the

- 529 wet season than the dry season (Table 3); in the dry season, when aerobic soil conditions
- 530 prevailed due to low soil moisture contents (Table 3), NO production in the soil may have been
- 531 more favoured (Conrad, 2002), partly counteracting the chemical reaction of NO removal from
- the atmosphere and its deposition onto the soil. This is also supported by the negative correlation

533	between dry-season soil NO fluxes and clay contents of the sites (Table S1), suggesting that soil
534	NO fluxes were responding to conditions favourable for NO production. Favourable soil
535	conditions were most visible at P8, which had the highest soil NO emissions (with low ambient
536	air NO concentrations) in the dry season (Table 3; Fig. 2d); soil NO fluxes at this site increased
537	when aerobic soil conditions prevailed (i.e. negative correlation with soil moisture; see 3.5) and
538	increased with substrate availability (i.e. positive correlation with soil NO_3^- ; see 3.5).
539	
540	4.5 Implications for climate change
541	It is notable that, although all four trace gases were strongly correlated with the temporal
542	variation in soil moisture and had clear differences between seasons (Table 3), there were no
543	correlations between the soil trace gases when looking at the annual fluxes (Table 5) or seasonal
544	averages (Table S1). This lack of correlation is presumably rooted in the interaction of other soil
545	and/or climatic factors with known drivers of soil trace gas production and consumption. We
546	have shown that in the short term, soil trace gas fluxes were largely controlled by soil moisture,
547	with the additional influences of soil temperature and mineral N concentration. However, in the
548	long term and/or over large spatial scales, the degree of soil development and related soil fertility
549	had a strong influence. Additionally, we have shown that even in presently undisturbed forests,
550	gas fluxes can be affected by 'upstream' anthropogenic activities. Therefore, in order to
551	understand and be able to predict soil trace gas fluxes under future climate scenarios, research
552	needs to focus on identifying and predicting interacting effects of soil and site, as well as
553	climatic characteristics, on soil-atmosphere trace gas exchange.
554	

555 Acknowledgements

- 556 Funding for this study was provided by the Deutsche Forschungsgemeinschaft (DFG, Co 749/1-
- 1) and by the Robert Bosch Foundation (Germany) for M.D. Corre's independent research group,
- 558 NITROF. We gratefully acknowledge Dr. Helene Muller-Landau for hosting us and facilitating
- 559 access to the field sites. The Smithsonian Tropical Research Institute and ANAM, Panama
- 560 provided invaluable administrative and technical support. The efforts of the NITROF assistants
- 561 (Rodolfo Rojas and Erick Diaz), and the SSTSE laboratory technicians in completing the data
- 562 collection and analyses were much appreciated.
- 563

564 **References**

- Allen, K., Corre, M. D., Tjoa, A. and Veldkamp, E.: Soil nitrogen-cycling responses to
- 566 conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia,

567 PLoS ONE, 10(7), e0133325, doi:10.1371/journal.pone.0133325, 2015.

- Bouwman, A. F., Fung, I., Matthews, E., and John, J.: Global analysis of the potential for N2O
 production in natural soils. Global Biogeochem. Cv., 7, 557–597, 1993.
- 570 Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern,
- 571 S.: Nitrous oxide emissions from soils: how well do we understand the processes and
- 572 their controls? Phil. Trans. R. Soc., 368, 20130122, 2013.
- 573 Chambers, J. Q., Tibuzy, E. S., Toledo, L. C., Crispim, B. F., Iguchi, N., dos Santos, J., Araujo,
- 574 A. C., Kruijt, B., Nobre, A. D., and Trumbore, S. E.: Respiration from a tropical forest
- 575 ecosystem: partitioning of sources and low carbon use efficiency. Ecol. Appl., 14, S72–
- 576 S88, 2004.

- 577 Chameides, W. L., Fehsenfeld, F., and Rodgers, M. O.: Ozone precursor relationships in the
- 578 ambient atmosphere. J. Geophys. Res., 97, 6037–6055, 1992.
- 579 Chin, K. J., Lukow, T., and Conrad, R.: Effect of temperature on structure and function of the
- 580 methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol.,
- 581 65, 2341–2349, 1999.
- 582 Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS,
- 583 N2O, and NO). Microbiol. Rev., 60, 609–640, 1996.
- 584 Conrad, R.: Microbiological and biochemical background of production and consumption of NO
- and N₂O in soil. In: Trace Gas Exchange in Forest Ecosystems, (eds Gasche R, Papen H,

586 Rennenberg H), Dordrecht, Kluwer Academic Publishers, pp 3–33, 2002.

- 587 Corre, M. D., Veldkamp, E., Arnold, J., and Wright, S. J.: Impact of elevated N input on soil N
- 588 cycling and losses in old-growth lowland and montane forests in Panama. Ecology, 91,
- 589 1715–1729, 2010.
- 590 Corre, M. D., Sueta, J. P., and Veldkamp, E.: Nitrogen-oxide emissions from tropical forest soils
- 591 exposed to elevated nitrogen input strongly interact with rainfall quantity and seasonality.592 Biogeochemistry, 118, 103-120, 2014.
- ____
- 593 Crawley, M. J.: The R book, Chichester: John Wiley, 2012.
- 594 Davidson, E. A., and Schimel, J. P.: Microbial processes of production and consumption of nitric
- 595 oxide, nitrous oxide and methane. In: Biogenic trace gases: measuring emissions from
- soil and water (eds Matson PA, Harriss RC), Blackwell Science, Oxford, pp 327–357,
- 597 1995.

598	Davidson, E. A., Verchot, L. V., Cattânio, J. H., Ackerman, I. L. and Carvalho, J. E. M.: Effects
599	of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia.
600	Biogeochemistry, 48, 53–69, 2000.
601	Davidson, E. A., Yoko Ishida, F., and Nepstad, D. C.: Effects of an experimental drought on soil
602	emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical
603	forest. Glob. Change Biol., 10, 718–730, doi: 10.1111/j.1529-8817.2003.00762.x, 2004.
604	Gut, A., S. M. van Dijk, M. Scheibe, U. Rummel, M. Welling, C. Ammann, F. X. Meixner, G. A.
605	Kirkman, M. O. Andreae, and B. E. Lehmann, NO emission from an Amazonian rain
606	forest soil: Continuous measurements of NO flux and soil concentration, J. Geophys.
607	Res., 107(D20), 8057, doi:10.1029/2001JD000521, 2002.
608	Hassler, E., Corre, M. D., Tjoa, A., Damris, M., Utami, S. R., and Veldkamp, E.: Soil fertility
609	controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape
610	converted from lowland forest to rubber and oil palm plantations. Biogeosciences 12:
611	5831-5852. DOI: 10.5194/bg-12-5831-2015, 2015.
612	Holtgrieve, G. W., Jewett, P. K. and Matson, P. A.: Variations in soil N cycling and trace gas
613	emissions in wet tropical forests. Oecologia, 146, 584-594, 2006.
614	Hricko, A.: Progress and pollution: port cities prepare for the Panama Canal expansion.
615	Environ. Health Persp., 120, A470–32012, 2012.
616	Jenny, H.: Arrangement of soil series and types according to functions of soil-forming factors.
617	Soil Sci., 61, 375–392, 1946.
618	Keller, M., and Reiners, W. A.: Soil-atmosphere exchange of nitrous oxide, nitric oxide, and
619	methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa

620 Rica. Global Biogeochem. Cy., 8, 399–409, 1994.

- 621 Keller, M., Jacob, D. J., Wofsy S. C., and Harriss, R. C.: Effects of tropical deforestation on
- 622 global and regional atmospheric chemistry. Climatic Change, 19, 139–158, 1991.
- 623 Keller, M., Varner, R., Dias, J. D., Silva, H., Crill, P., de Oliveira, R. C., and Asner, G. P.: Soil-
- 624 atmosphere exchange of nitrous oxide, nitric oxide, methane, and carbon dioxide in
- logged and undisturbed forest in the Tapajos national forest. Brazil, Earth Interact., 9, 1–
 28, 2005.
- 627 Kiese, R., Hewett, B., Graham, A., and Butterbach-Bahl, K.: Seasonal variability of N₂O and
- CH_4 uptake by tropical rainforest soils of Queensland, Australia. Global Biogeochem.
- 629 Cy.,25 17, 1043, doi:10.1029/2002GB002014, 2003.
- 630 Koehler, B., Corre, M. D., Veldkamp, E., and Sueta, J. P.: Chronic nitrogen addition causes a
- 631 reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical
- 632 montane forest but no response from a tropical lowland forest on a decadal time scale.
- 633 Biogeosciences, 6, 2973–2983, 2009a.
- 634 Koehler, B., Corre, M. D., Veldkamp, E., Wullaert. H., and Wright, S. J.: Immediate and long-
- term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen
 input. Glob. Change Biol., 15, 2049–2066, 2009b.
- 637 Koehler, B., Zehe, E., Corre, M. D., and Veldkamp, E. An inverse analysis reveals limitations of
- the soil- CO₂ profile method to calculate CO₂ production for well-structured soils.
 Biogeosciences, 7: 2311–2325, 2010.
- 640 Koehler, B., Corre, M. D., Steger, K., Well, R., Zehe, E., Sueta, J. P. and Veldkamp, E. An in-
- 641 depth look into a tropical lowland forest soil: how 9-11 years experimental nitrogen
- addition affected the contents of N_2O , CO_2 and CH_4 down to 2-m depth. Biogeochemistry
- 643 111: 695-713. Erratum in 111: 715-717, 2012.

- 644 Kursar, T. A.: Evaluation of soil respiration and soil CO₂ concentration in a lowland moist forest
- 645 in Panama. Plant Soil, 113, 21–29, 1989.
- Le Mer, J., and Roger, P.: Production, oxidation, emission and consumption of methane by soils:
 a review. Eur. J. Soil Biol., 37, 25–50, 2001.
- 648 Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and Tardieux, P.:
- 649 Experimental determination of nitrogen kinetic isotope fractionation: some principles;
- 650 illustration for the denitrification and nitrification processes. Plant Soil, 62, 413–430,651 1981.
- Mohanty, S. R., Bodelier, P. L. E., and Conrad, R.: Effect of temperature on composition of the
 methanotrophic community in rice field and forest soil. FEMS Microbiol. Ecol., 62, 24–
 31, 2007.
- 655 Nottingham, A. T., Turner, B. L., Winter, K., van der Heijden, M. G., and Tanner, E. V.:
- Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol., 186,
 957-967, 2010.
- 658 Pape, L., Ammann, C., Nyfeler-Brunner, A., Spirig, C., Hens, K., and Meixner, F. X.: An

automated dynamic chamber system for surface exchange measurement of non-reactive
and reactive trace gases of grasslandecosystems. Biogeosciences, 6, 405-429, 2009.

- Prather, M., Derwent, R., Ehhalt, D., Fraser, P., Sanhueza, E., and Zhou, X.: Other trace gases
- and atmospheric chemistry. In: Climate Change 1994 (eds Houghton JT, Meira Filho LG,
- 663Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K), Cambridge University
- 664 Press, Cambridge, UK, 73–126, 1995.
- Pyke, C. R., Condit, R., Aguilar, S., and Lao, S.: Floristic composition across a climatic gradient
 in a neotropical lowland forest. J. Veg. Sci., 12, 553–566, 2001.

667	R Core Team. R: A language and environment for statistical computing. R Foundation for
668	Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL: http://www.R-
669	project.org/, 2013.
670	Raich, J. W., and Schlesinger, W. H.: The global carbon dioxide flux in soil respiration and
671	relationship to vegetation and climate. Tellus, 44B, 81–99, 1992.
672	Rummel, U., C. Ammann, A. Gut, F. X. Meixner, and M. O. Andreae, Eddy covariance
673	measurements of nitric oxide flux within an Amazonian rain forest, J. Geophys. Res.,
674	107(D20), 8050, doi:10.1029/2001JD000520, 2002
675	Saikawa, E., Schlosser, C. A., and Prinn, R. G.: Global modeling of soil nitrous oxide emissions
676	from natural processes. Global Biogeochem. Cy., 27, doi:10.1002/gbc.20087, 2013.
677	Santiago, L.S., Schuur, E.A. and Silvera, K.: Nutrient cycling and plant-soil feedbacks along a
678	precipitation gradient in lowland Panama. J. Trop. Ecol., 21, 461–470, 2005.
679	Schwendenmann, L., and Veldkamp, E.: Long-term CO2 production from deeply weathered soils
680	of a tropical rain forest: Evidence for a potential positive feedback to climate warming.
681	Glob. Change Biol., 12, 1878–1893, 2006.
682	Schwendenmann, L., Veldkamp, E., Brenes, T., O'Brien J. J., and Mackensen, J.: Spatial and
683	temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva,
684	Costa Rica. Biogeochemistry, 64, 111–128, 2003.
685	Silver, W.L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., and Cosme, R., Effects of Soil
686	Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest
687	Ecosystem. Ecosystems, 3, 193-209. doi:10.1007/s100210000019, 2000.

688

689	M., and Keller, M.: Fine root dynamics and trace gas fluxes in two lowland tropical forest
690	soils. Glob. Change Biol., 11, 290–306, doi: 10.1111/j.1365-2486.2005.00903.x, 2005.
691	Sotta, E. D., Veldkamp, E., Guimaraes, B. R., Paixao, R. K., Ruivo, M. L. P., and Almeida, S. S.:
692	Landscape and climatic controls on spatial and temporal variation in soil CO2 efflux in an
693	Eastern Amazonian Rainforest, Caxiuana, Brazil. Forest Ecol. Manag., 237, 57-64, 2006.
694	Sotta, E. D., Corre, M. D., and Veldkamp, E.: Differing N status and N retention processes of
695	soils under old-growth lowland forest in Eastern Amazonia, Caxiuanã, Brazil. Soil Biol.
696	Biochem., 40, 740–750, 2008.
697	Sousa Neto, E., Carmo, J. B., Keller, M., Martins, S. C., Alves, L. F., Vieira, S. A., Piccolo, M.
698	C., Camargo, P., Couto, H. T. Z., Joly, C. A., and Martinelli, L. A.: Soil-atmosphere
699	exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the
700	coastal Brazilian Atlantic forest. Biogeosciences, 8, 733-742, doi:10.5194/bg-8-733-
701	2011, 2011.
702	Steudler, P. A., Melillo, J. M., Feigl, B. J., Neill, C., Piccolo, M. C., and Cerri., C. C.:
703	Consequences of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon
704	Basin. J. Geophys. ResAtmos., 101, 18547-18554, doi:10.1029/96JD01551, 1996.
705	Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
706	Y., Bex, B., and Midgley, B. M.: IPCC, 2013: climate change 2013: the physical science
707	basis. Contribution of working group I to the fifth assessment report of the
708	intergovernmental panel on climate change. 2013.
709	Swaine MD. Rainfall and soil fertility as factors limiting forest species distributions in Ghana. J.
710	Ecol., 84, 419-428, 1996.

Silver, W. L., Thompson, A. W., McGroddy, M. E., Varner, R. K., Dias, J. D., Silva, H., Crill, P.

- 711 Tamai, N., Takenaka, C., Ishizuka, S., and Tezuka, T.: Methane flux and regulatory variables in
- soils of three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in central
- 713 Japan. Soil Biol. Biochem., 35, 633–641, 2003.
- 714 The World Factbook. https://www.cia.gov/library/publications/the-world-factbook/geos/pm.html
- 715 [Accessed: March, 2015]
- 716 Townsend, A. R., Asner, G. P., and Cleveland, C. C.: The biogeochemical heterogeneity of
- 717 tropical forests. Trends Ecol. Evol., 23, 424–431, 2008.
- Turner, B. L., and Engelbrecht, B. M. J.: Soil organic phosphorus in lowland tropical rain forests.
- 719 Biogeochemistry, 103, 295–315, 2011.
- Veldkamp, E., B. Koehler, and M. D. Corre.: Indications of nitrogen-limited methane uptake in
- tropical forest soils. Biogeosciences 10, 5367–5379, 2013.
- 722 Verchot, L. V., Davidson, E. A., Cattânio, H., Ackerman, I. L., Erickson, H. E., and Keller, M.:
- Land use change and biogeochemical controls of nitrogen oxide emissions from soils in
 eastern Amazonia. Global Biogeochem. Cy., 13(1), 31–46, 1999.
- 725 Verchot, L. V., Davidson, E. A., Cattanio, J. H., and Ackerman, I. L.: Land-use change and
- biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems, 3,
- 727 41–56, doi:10.1007/s100210000009, 2000.
- Windsor, D. M.: Climate and moisture availability in a tropical forest, long term record for Barro
 Colorado Island, Panama. Smithson. Contrib. Earth Sci., 29, 1–145, 1990.
- 730 Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V., Sayer, E. J., Santiago,
- T31 L. S., Kaspari, M., Hedin, L. O., Harms, K. E., Garcia, M. N., and Corre, M. D.
- Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production
- in a lowland tropical forest. Ecology, 92, 1616–1625, 2011.

- 734 Yavitt, J. B., Wright, S. J., and Kelman Wieder, R.: Seasonal drought and dry-season irrigation
- influence leaf-litter nutrients and soil enzymes in a moist, lowland forest in Panama.
- 736 Austral Ecol., 29, 177–188, 2004.
- 737 Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., and Smith, G.M.: Mixed effects models and
- extensions in ecology with R. Springer, New York., 2009.

Plot code ^a	Longitude, latitude	Elevation	Elevation Forest age	Soil	Soil	Precipitation Geology ^b	Geology ^b
		(m above	classification ^a	taxonomic	texture	$(mm yr^{-1})^{b}$	
		sea level)		order ^b	(% sand/		
					silt/clay) ^c		
Metropolitan	Metropolitan 79° 33' W, 8° 59' N	30	mature	Inceptisol	3/35/62	1700	Aglomerate of andesitic
			secondary	(Cambisol)			tuff, Early-Late Oligocene
P27	79° 38' W, 9° 4' N	160	mature	Inceptisol	2/38/60	2030	Aglomerate of siltstone, tuff
			secondary	(Cambisol)			and limestone, Early
							Miocene
P8	79° 44' W, 9° 10' N	50	old growth	Oxisol	12/39/48	2360	Basaltic and andesitic lavas
				(Ferralsol)			and tuff, pre-Tertiary
P19	79° 46' W, 9° 11' N	160	mature	Oxisol	10/27/63	2690	Basaltic and andesitic lavas
			secondary	(Ferralsol)			and tuff, pre-Tertiary
P32	79° 43' W, 9° 21' N	340	old growth	Oxisol	1/39/60	3400	Basaltic and andesitic lavas
				(Ferralsol)			and tuff, pre-Tertiary
^a Plot codes a	^a Plot codes and forest age classification are from Pyke et al. (2001).	ation are fro	m Pyke et al. (20	01).			

Table 1 Description of location, rainfall and geology of one hectare forest inventory plots located in the Panama Canal watershed, 739

740 central Panama.

34

^b Turner and Engelbrecht (2011) reported the tentative soil order (based on US Soil Taxonomy with equivalent FAO classification in 742

- brackets), mean annual precipitation (estimated from location and elevation data as described by Engelbrecht et al. 2007), and the 743
 - 744 geological information (taken from Stewart et al. 1980).
- ^c Textural analyses are the weighted average of the sampling depth intervals: 0-5, 5-10, 10-25 and 25-50 cm. 745

Table 2 Soil biochemical characteristics in the top 50 cm of lowland forest soils along orthogonal gradients of annual precipitation (shown in brackets below each site) and soil fertility in the Panama Canal watershed, central Panama.

Soil	Metropolitan	P27	P8	P19	P32
characteristics ^a	(1700 mm)	(2030 mm)	(2360 mm)	(2690 mm)	(3400 mm)
δ^{15} N enrichment factor, ϵ^{b}	-1.95 ± 0.52 ^b	-0.37 ± 1.69 ^b	-2.76 ± 0.54 ^{ab}	-4.70 ± 0.44 ^a	-2.65 ± 0.30^{ab}
δ ¹⁵ N natural abundance (‰)	$5.9\pm0.8~^{c}$	$6.3\pm0.4~^{bc}$	$12.0\pm1.0~^{a}$	$9.2\pm0.9~^{a}$	7.0 ± 0.3 b
Organic C (mg C g ⁻¹)	12.8 ± 1.7 ^{ab}	$10.8\pm3.3~^{b}$	15.1 ± 0.2 ^{ab}	15.0 ± 1.3^{ab}	19.6 ± 2.1 ^a
Total N (mg C g ⁻¹)	1.08 ± 0.15 ^b	$1.05\pm0.25~^{b}$	$1.49\pm0.02~^{ab}$	$1.44\pm0.11~^{ab}$	1.85 ± 0.17 ^a
C:N ratio	$10.9\pm4.1~^a$	$9.07\pm1.8~^a$	$9.76 \pm 1.0 \ ^a$	$9.88 \pm 1.0 \ ^a$	10.1 ± 1.2 $^{\rm a}$
рН (1:4 H ₂ O)	6.20 ± 0.46 ^a	5.82 ± 0.72 ^a	$5.05\pm0.17~^{b}$	$4.88\pm0.30^{\ b}$	$5.14\pm0.22~^{b}$
ECEC ^c (mmol _c kg ⁻¹)	$199\pm72~^{ab}$	$267\pm11~^a$	56 ± 2 ^c	51 ± 6 ^c	118 ± 12 bc
Exch. bases ^c (mmol _c kg ⁻¹)	$198\pm72~^a$	264 ± 10^{a}	37 ± 6 ^c	21 ± 8 ^c	90 ± 11 ^b
Exchangeable Al (mmol _c kg ⁻¹)	$0.22\pm0.13~^{b}$	1.96 ± 0.51 ^b	12.2 ± 4.7 ^{ab}	$22.6\pm7.3~^{a}$	22.2 ± 3.2^{a}

^a Means (\pm SE, n = 4) followed by different letters indicate significant differences between sites (one-way ANOVA with Tukey HSD at $P \le 0.05$). Values for each replicate plot are weighted average of the sampling depth intervals of 0-5, 5-10, 10-25 and 25-50 cm.

^b Calculated using Rayleigh equation (Mariotti et al. 1981): $\varepsilon = d_s - d_{so} / \ln f$; $d_{s^-} \delta^{15}N$ natural abundance signatures at various depths in the soil profile, $d_{so^-} \delta^{15}N$ natural abundance of the reference depth (top 5cm) and *f* is the remaining fraction of total N (i.e. total N concentration at a given depth divided by the total N concentration in the top 5 cm).

^c ECEC – Effective cation exchange capacity; Exch. bases – sum of exchangeable Ca, Mg, K, Na

Table 3 Soil f annual precipi	Table 3 Soil factors (measured in theannual precipitation (mm per year; sh	ed in the top 5 cm year; shown in b	n of soil) and tra rackets below e:	ce gas fluxes fro ach site) and soi	om lowland fore: I fertility in the]	Table 3 Soil factors (measured in the top 5 cm of soil) and trace gas fluxes from lowland forest soils along orthogonal gradients of annual precipitation (mm per year; shown in brackets below each site) and soil fertility in the Panama Canal watershed, central	logonal gradient: atershed, central	s of
Panama.								
Site / season ^a	Soil	Soil moisture	Soil NH_4^+	Soil NO ₃ ⁻	CO ₂ flux (mg	CH4 flux (µg	N ₂ O flux (µg	NO flux
	temperature	$(g g^{-1})$	(mg N kg ⁻¹)	$(mg N kg^{-1})$	$C m^{-2} h^{-1}$)	$C m^{-2} h^{-1}$)	$N m^{-2} h^{-1})$	$(\mu g N m^{-2} h^{-1})$
	(° C)							
Wet season								
Metropolitan		o ca co o a de	d.02.17.10.2	1 02 10 71 Ba	AVO JOI	1 17 17 17 A8		11 C/T CO/Bb
(1700)	(4.0) 8.02	0.64 (0.04)	-(70.1) 46.0	_(1/.0) c6.1	120 (20)	1.47 (3.00)	(60.7) 81.0	-11.0 (/.08)
P27 (2030)	25.2 (0.4) ^b	$25.2 (0.4)^{\text{b}}$ 0.72 $(0.06)^{\text{Ab}}$	6.39 (1.35) ^{Aab}	$0.51 (0.17)^{\rm Bc}$	124 (18) ^A	-3.01 (4.20) ^{Aa}	4.15 (2.56) ^b	-3.24 (2.68) ^{Ba}
P8 (2360)	$25.6(0.4)^{\mathrm{Aab}}$	$0.60 (0.03)^{\rm Ac}$	5.68 (0.94) ^{ab}	1.32 (0.54) ^{Bb}	131 (19) ^A	-7.87 (6.95) ^{Abc}	$13.5(7.0)^{Aa}$	-3.95 (6.60) ^{Ba}
P19 (2690)	25.5 (0.5) ^{ab}	0.72 (0.06) ^{Ab}	7.29 (1.39) ^{ab}	$0.46(0.39)^{c}$	129 (15) ^A	-13.0 (6.92) ^{Ac}	5.58 (3.13) ^{Ab}	-3.98 (4.95) ^a
P32 (3400)	24.6 (0.4) ^c	$0.90\ (0.08)^{\rm Aa}$	8.21 (1.87) ^{Aa}	$0.49 (0.27)^{\rm Bc}$	107 (17) ^A	-6.79 (6.09) ^{Aab}	6.41 (3.09) ^b	-4.01 (4.34) ^{Ba}
Dry season								
Metropolitan		O 45 (O OC)Bb		2 10 11 EE Aa	00 7 7 00B	COCATA Ba		1 OF /7 01 \Aab
(1700)	(5.0) 5.62	(00.0) C4.0	(07.1) 75.5	(00.1) 74.0	82.1 (19)	-0.88 (4.14)	4.18 (4.02)	(17.7) CU- 7 -

key	s model with Tu	different uppercase letters indicate significant differences between seasons within each site (linear mixed effects model with Tukey	hin each site (li	een seasons wit	differences betw	icate significant	rcase letters ind	different uppe	S.
q	ı each season an	^a Means ((\pm SE, <i>n</i> = 4) followed by different lowercase letters indicate significant differences among sites within each season and	nt differences :	ndicate significa	wercase letters i	d by different lo	E, n = 4) followe	^a Means ((±SI	4
4.34 (2.23) ^{Aa}	5.89 (5.51)	-17.4 (5.09) ^{Bab}	78.5 (15) ^B	$7.86(1.37)^{a}$ 1.17 (0.61) ^{Ab} 78.5 (15) ^B	7.86 (1.37) ^a	$24.4 (0.3)^{c}$ 0.64 $(0.09)^{Ba}$	24.4 (0.3) ^c	P32 (3400)	
-2.41 (2.35) ^b	$1.30(3.09)^{\rm B}$	-29.2 (4.08) ^{Bc}	85.5 (12) ^B	0.64 (0.26) ^b	$(0.04)^{Bb}$ 7.47 $(1.22)^{ab}$ 0.64 $(0.26)^{b}$	$0.49 \ (0.04)^{\mathrm{Bb}}$	25.0 (0.3) ^{ab} 0.49 (P19 (2690)	
$6.50(3.76)^{\rm Aa}$	5.64 (5.75) ^B	-21.3 (8.37) ^{Bbc}	85.7 (17) ^B	$(0.06)^{\rm Bb}$ 6.04 $(1.15)^{\rm abc}$ 3.68 $(1.16)^{\rm Aa}$	6.04 (1.15) ^{abc}	$0.48 \left(0.06 \right)^{\mathrm{Bb}}$	24.9 (0.3) ^{Bab} 0.48 (P8 (2360)	
4.87 (4.70) 1.09 (1.23) ^{Aab}		-12.1 (3.1) ^{Bab}	87.7 (14) ^B	$0.79~(0.18)^{Ab}$	$4.46(0.89)^{ m Bc}$	$24.7 (0.2)^{\text{bc}} = 0.53 (0.08)^{\text{Bab}} = 4.46 (0.89)^{\text{Bc}} = 0.79 (0.18)^{\text{Ab}} = 87.7 (14)^{\text{B}}$	24.7 (0.2) ^{bc}	P27 (2030)	

HSD test at $P \leq 0.05$). 9

- 7 **Table 4** Annual^a trace gas fluxes (mean (SE), n = 4) from lowland tropical forest soils along
- 8 orthogonal gradients of annual precipitation and soil fertility in the Panama Canal watershed,

9 central Panama.

Site (annual precipitation)	CO_2	CH ₄	N ₂ O	NO
	$(Mg C ha^{-1} yr^{-1})$	$(\text{kg C ha}^{-1} \text{ yr}^{-1})$	$(\text{kg N ha}^{-1} \text{yr}^{-1})$	$(\text{kg N ha}^{-1} \text{ yr}^{-1})$
Met (1700 mm)	8.48 (0.70)	-0.34 (0.17)	0.41 (0.06)	-0.82 (0.16)
P27 (2030 mm)	9.16 (0.62)	-0.51 (0.04)	0.43 (0.06)	-0.12 (0.04)
P8 (2360 mm)	10.14 (0.76)	-1.45 (0.15)	1.07 (0.15)	-0.17 (0.17)
P19 (2690 mm)	9.89 (0.49)	-1.98 (0.07)	0.35 (0.05)	-0.21 (0.10)
P32 (3400 mm)	7.89 (0.84)	-0.94 (0.19)	0.66 (0.18)	-0.03 (0.09)

10 ^{*a*} Calculated using the trapezoidal rule between fluxes and time interval, covering the

11 measurement periods of January - December 2011 for CO₂ , CH₄ and N₂O, and June 2010 - May

12 2011 for NO. Annual fluxes were not tested statically for differences among sites since these are

13 trapezoidal extrapolations.

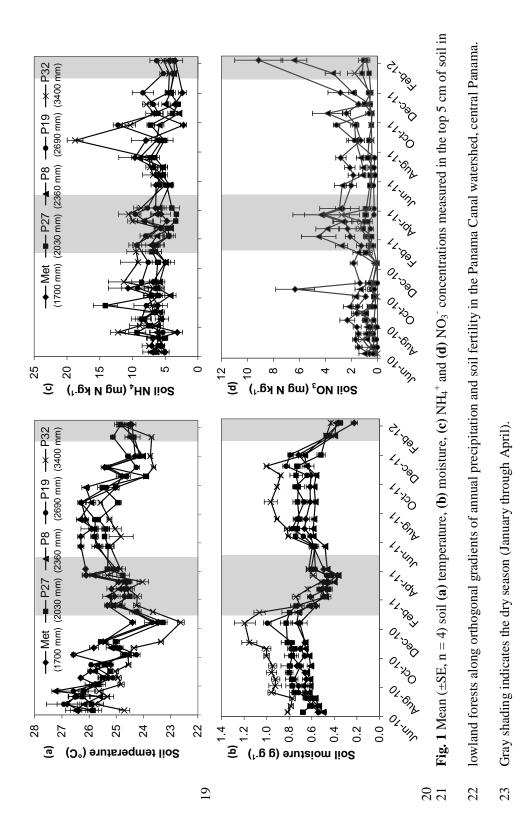
(\mathbf{x})	0	
\sim	BY	

14

15

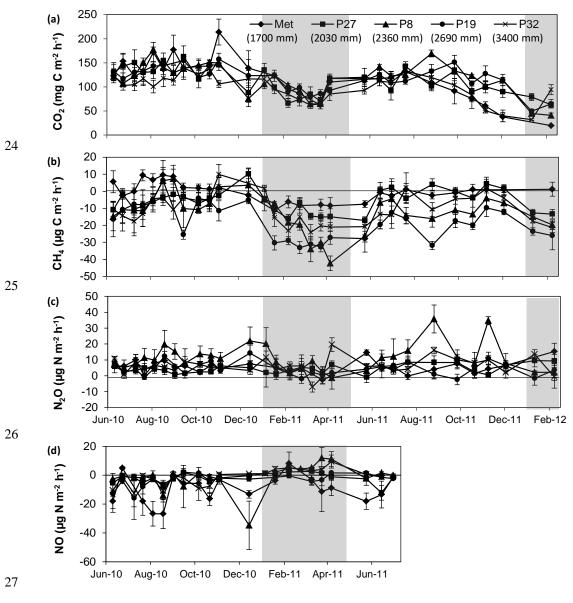
^{15}N sig. -0.87^{**} -0.67^{**} -0.30 0.42 -0.61^{**} ECEC 0.80^{**} 0.34 -0.50 0.76^{**} BS -0.13 -0.87^{**} 0.96^{**}	24	CO_2	CH_4	N_2O	NO
EC 0.80 ^{**} 0.34 -0.50 -0.13 -0.87 ^{**}	-0.15	0.41	-0.70	0.30	0.16
-0.13 -0.87**	** -0.12	-0.33	0.77^{**}	-0.09	-0.17
	** -0.12	-0.40	0.78^{**}	-0.12	-0.54
Na 0.45 -0.18	8 -0.15	0.04	0.01	-0.01	0.60^{**}
Al -0.87**	** 0.04	0.24	-0.71	0.17	0.58^{**}
Hd	-0.04	-0.34	0.76^{**}	-0.12	-0.54
Clay		-0.13	-0.17	-0.67**	-0.34
CO ₂			-0.24	0.26	0.10
CH4				-0.07	-0.31
N_2O					0.19

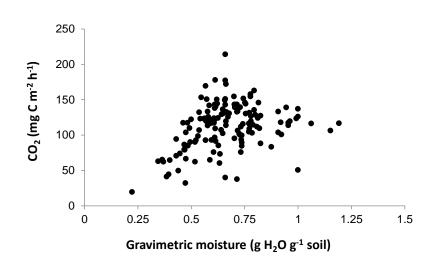
40


(BS).

18

16





- 29 along orthogonal gradients of annual precipitation and soil fertility in the Panama Canal
- 30 watershed, central Panama. Gray shading indicates the dry season (January through April).
- 31

33 Fig. 3 Soil CO₂ fluxes and moisture contents (top 5 cm) in five lowland forests along orthogonal

34 gradients of annual precipitation and soil fertility in the Panama Canal watershed, central

35 Panama. Each data point is the average of four replicate plots on one sampling day from one of

36 the five sites, measured from June 2010 to February 2012 (n = 145).

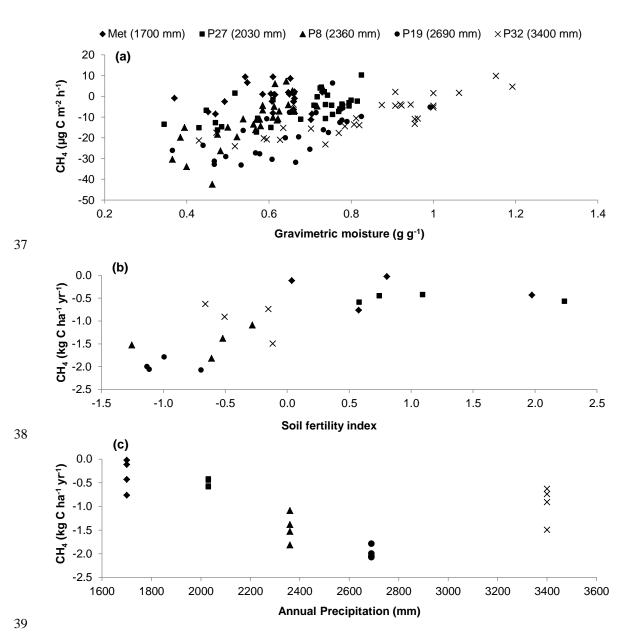
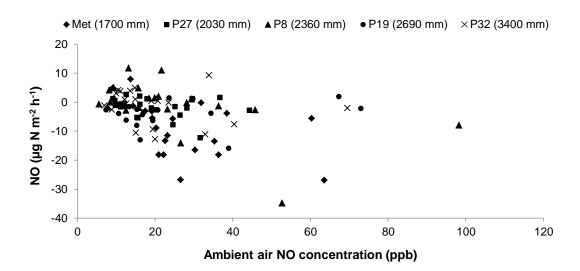



Fig. 4 Average daily soil CH₄ fluxes plotted against (a) soil moisture (top 5 cm), and annual soil CH₄
fluxes plotted against (b) soil fertility index and (c) annual precipitation. For (a), each data point is the
average of four replicate plots on each sampling day of each of the five sites, measured from June 2010
to February 2012. The five lowland forests are located along orthogonal gradients of annual
precipitation and soil fertility in the Panama Canal watershed, central Panama.

47 Fig. 5 Soil NO fluxes plotted against ambient air NO concentrations; each data point is the average of 48 four replicate plots on each sampling day in each of the five sites, measured from June 2010 to June 49 2011. The five lowland forests are located along orthogonal gradients of annual precipitation and soil 50 fertility in the Panama Canal watershed, central Panama.